Building a face recognition API with face_recognition, Flask and PostgreSQL

Colin Wren
4 min readNov 14, 2022

A couple of months ago I read about PimEyes a service that allows for finding images across the web that contain a matching face. There’s a little controversy behind the service because it doesn’t vet its users strictly which means that the system can be abused.

This got me thinking about how such a technology was built, as the face recognition libraries I had seen in the past required loading in images to conduct a comparison and at the scale that Pimeyes would be operating on this would be really inefficient.

In order to return results across multiple faces quickly there would need to be some alternative means of carrying out this face comparison on the database layer.

After a bit of searching I found an excellent, but broken example using PostgreSQL’s cube extension that saves two vectors of the face’s descriptors and uses euclidean distance to return records that are above a certain threshold. After fixing the incorrect SQL statement I was able to save an image’s descriptors and then use another image’s to return the original image as a match.

How it works

The Python code makes use of a couple of libraries:

--

--

Colin Wren
Colin Wren

Written by Colin Wren

Currently building reciprocal.dev. Interested in building shared understanding, Automated Testing, Dev practises, Metal, Chiptune. All views my own.

Responses (2)